Lowest Power 3．0GHz ECL／PECL Differential Data and Clock D Flip－Flop

\qquad General Description
The MAX9381 differential data，differential clock D flip－ flop is pin compatible with the ON Semiconductor MC100EP52，with the added benefit of a wider supply－ voltage range from 2.25 V to 5.5 V and 25% lower supply current．Data enters the master part of the flip－flop when the clock is low and is transferred to the outputs upon a positive transition of the clock．Interchanging the clock inputs allows the part to be used as a nega－ tive edge－triggered device．The MAX9381 utilizes input clamping circuits that ensure the stability of the outputs when the inputs are left open or at $V_{E E}$ ．
The MAX9381 is offered in an 8－pin SO package and the smaller 8－pin $\mu \mathrm{MAX}$ package．

Applications

Precision Clock and Data Distribution
Central Office
DSLAM
DLC
Base Station
ATE

Features
－3．0GHz Guaranteed Operating Clock Frequency
－0．2psRms Added Random Jitter
－328ps Typical Propagation Delay
－PECL Operation from Vcc $=2.25 \mathrm{~V}$ to 5.5 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
－ECL Operation from $V_{E E}=-2.25 \mathrm{~V}$ to -5.5 V with Vcc $=0 \mathrm{~V}$
－Input Safety Clamps Ensure Output Stability when Inputs are Open or at VEE
－$\pm 2 k V$ ESD Protection（Human Body Model）

Ordering Information

PART	TEMP RANGE	PIN－PACKAGE
MAX9381ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX9381EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$

＊Future product－contact factory for availability．

TOP VIEW

For pricing，delivery，and ordering information，please contact Maxim／Dallas Direct！at 1－888－629－4642，or visit Maxim＇s website at www．maxim－ic．com．

Lowest Power 3.0GHz ECL/PECL Differential Data and Clock D Flip-Flop

ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.25 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right), \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.375 \mathrm{~V}$ to $5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+25^{\circ} \mathrm{C}\right)$, outputs terminated with 50Ω $\pm 1 \%$ to $\mathrm{V}_{C C}-2.0 \mathrm{~V}$, unless otherwise noted. Typical values are at $\mathrm{V}_{C C}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{C C}-1.0 \mathrm{~V}$, $\mathrm{V}_{\text {ILD }}=\mathrm{V}_{C C}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1, 2, and 3)

PARAMETER	SYMBOL	CONDITIONS		$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
INPUTS (D, $\overline{\mathrm{D}}, \mathrm{CLK}, \overline{\mathrm{CLK}}$)													
Differential Input High Voltage	VIHD	Figure 1		$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1.2 \end{gathered}$		VCC	$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1.2 \end{gathered}$		VCC	$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1.2 \end{gathered}$		VCC	V
Differential Input Low Voltage	VILD	Figure 1		VEE		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.15 \end{gathered}$	VEE		$\begin{gathered} V_{C C}- \\ 0.15 \end{gathered}$	VEE		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.15 \end{gathered}$	V
Differential Input Voltage	VID	Figure 1	$\begin{array}{\|l\|} \hline V_{C C}-V_{E E} \\ <3.0 V \\ \hline \end{array}$	0.15		$\begin{aligned} & V_{C C}- \\ & V_{E E} \end{aligned}$	0.15		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & \mathrm{V}_{\mathrm{EE}} \end{aligned}$	0.15		$\begin{aligned} & \hline V_{C C}- \\ & V_{\mathrm{EE}} \end{aligned}$	V
			$\begin{aligned} & V_{C C}-V_{E E} \\ & \geq 3.0 \mathrm{~V} \end{aligned}$	0.15		3.0	0.15		3.0	0.15		3.0	
Single-Ended Input Current	IIH, IIL	D, \bar{D}, CLK, or CLK$\text { = VIHD or } \mathrm{V}_{\text {ILD }}$		-10		+200	-10		+200	-10		+200	$\mu \mathrm{A}$
OUTPUTS (Q, $\overline{\mathbf{Q}}$)													
Output High Voltage	VOH	Figure 1		$\begin{array}{\|l} \hline \\ V_{C C} \\ 1.145 \\ \hline \end{array}$		$\begin{aligned} & V_{C C}- \\ & 0.895 \end{aligned}$	$\begin{aligned} & \hline V_{C C}- \\ & 1.145 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { VCC } \\ & 0.895 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline V_{C C}- \\ & 1.145 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { VCc - } \\ & 0.895 \\ & \hline \end{aligned}$	V
Output Low Voltage	VoL	Figure 1		$\begin{aligned} & V_{C C}- \\ & 1.945 \end{aligned}$		$\begin{aligned} & V_{C C}- \\ & 1.695 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.945 \end{aligned}$		$\begin{aligned} & V_{C C}- \\ & 1.695 \end{aligned}$	$\begin{aligned} & V_{\text {CC }}- \\ & 1.945 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.695 \end{aligned}$	V
Differential Output Voltage	Vod	Voh - Vol, Figure 1		550			550			550			mV
POWER SUPPLY													
Power-Supply Current (Note 4)	Iee				17	35		20	35		22	35	mA

Lowest Power 3.0GHz ECL/PECL Differential Data and Clock D Flip-Flop

AC ELECTRICAL CHARACTERISTICS

($\mathrm{V} C \mathrm{C}-\mathrm{V}_{\mathrm{EE}}=2.25 \mathrm{~V}$ to $5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right), \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.375 \mathrm{~V}$ to $5.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+25^{\circ} \mathrm{C}\right)$, outputs terminated with 50Ω $\pm 1 \%$ to $V_{C C}-2.0 \mathrm{~V}$, fCLK $\leq 3.0 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%), V_{I H D}=V_{E E}+1.2 \mathrm{~V}$ to $\mathrm{V}_{C C}, V_{I L D}=V_{E E}$ to $\mathrm{V}_{C C}-0.15 \mathrm{~V}$, $\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.15 \mathrm{~V}$ to smaller of IVCC $-\mathrm{V}_{\text {EE }}$ or 3 V , unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{E E}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}$, $\mathrm{V}_{\text {ILD }}=\mathrm{V}_{\text {CC }}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1,5)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Propagation Delay CLK, CLK to Q, \bar{Q}	tpHL tpLH	Figure 2			370		328	405			490	ps
Maximum Clock Frequency	fCLKMAX	$V_{O D} \geq 300 \mathrm{mV}$	3.0			3.0			3.0			GHz
Setup Time	ts	Figure 2	100			100			100			ps
Hold Time	th	Figure 2	50			50			50			ps
Added Random Jitter (Note 6)	tRJ			0.2	0.8		0.2	0.8		0.2	0.8	$\begin{gathered} \text { ps } \\ \text { (RMS) } \end{gathered}$
Differential Output Rise/Fall Time	tR/t ${ }_{\text {F }}$	20% to 80%, Figure 2	70	120	170	80	120	180	90	120	200	ps

Note 1: Measurements are made with the device in thermal equilibrium.
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
Note 3: DC parameters are production tested at $+25^{\circ} \mathrm{C}$. DC limits are guaranteed by design and characterization over the full operating temperature range.
Note 4: All pins floating except V_{CC} and V_{EE}.
Note 5: Guaranteed by design and characterization, and are not production tested. Limits are set to ± 6 sigma.
Note 6: Device jitter added to the input clock.

Lowest Power 3.0GHz ECL/PECL Differential Data and Clock D Flip-Flop

Typical Operating Characteristics

($\mathrm{V}_{C C}-\mathrm{V}_{\mathrm{EE}}=3.3 \mathrm{~V}$, outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=3 \mathrm{GHz}, \mathrm{f}_{\mathrm{D}}=\mathrm{f}_{\mathrm{CLK}} / 2$ input transition time $=125$ ps (20% to 80%), unless otherwise noted.)

Lowest Power 3.0GHz ECL/PECL Differential Data and Clock D Flip-Flop

Pin Description

PIN	NAME	FUNCTION
1	D	Noninverting D Input to the Flip-Flop. Internally pulled down with a $75 \mathrm{k} \Omega$ resistor to V_{EE}.
2	$\overline{\mathrm{D}}$	Inverting D Input to the Flip-Flop. Internally pulled down with a $75 \mathrm{k} \Omega$ resistor to V_{EE}.
3	CLK	Noninverting Clock Input to the Flip-Flop. Internally pulled down with a $75 \mathrm{k} \Omega$ resistor to V_{EE}.
4	$\overline{\mathrm{CLK}}$	Inverting Clock Input to the Flip-Flop. Internally pulled down with a $75 \mathrm{k} \Omega$ resistor to V_{EE}.
5	V EE	Negative Supply
6	$\overline{\mathrm{Q}}$	Inverting Q Output from the Flip-Flop. Terminate with a 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$ or equivalent.
7	Q	Noninverting Q Output from the Flip-Flop. Terminate with a 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$ or equivalent.
8	$\mathrm{~V}_{\mathrm{CC}}$	Positive Supply. Bypass from $\mathrm{V}_{C C}$ to V_{EE} with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.

Detailed Description

The MAX9381 D flip-flop transfers the logic level at the D input to the Q output on a rising edge transition of the clock, provided the minimum setup and hold times are met. By interchanging the CLK and CLK inputs, the flipflop functions as a falling-edge triggered flip-flop.
The input signals ($\mathrm{D}, \overline{\mathrm{D}}$ and CLK, $\overline{\mathrm{CLK}}$) are differential and have a maximum differential input voltage of 3.0 V or $V_{C C}-V_{E E}$, whichever is less. To ensure that the outputs remain stable when the inputs are left open, each of the inputs is driven low by a $75 \mathrm{k} \Omega$ bias resistor connected to $V_{E E}$. If the D and \bar{D} inputs are left open or at $V_{E E}$, the output is guaranteed to be a differential low on the next low-to-high transition of the clock. If the CLK and $\overline{C L K}$ inputs are left open or at $V_{E E}$, the outputs remain unchanged (Table 1). Terminate the outputs (Q, $\bar{Q})$ through 50Ω to $V_{C C}-2 V$ or an equivalent Thevenin termination (see the Output Termination section).

ECL/PECL Operation
Output levels are referenced to V_{CC} and are considered PECL or ECL, depending on the level of the V_{CC}

Table 1. Truth Table*

$\mathbf{D}, \overline{\mathbf{D}}$	$\mathbf{C L K}, \overline{\mathbf{C L K}}$	$\mathbf{Q}, \overline{\mathbf{Q}}$
L	\uparrow	L
H	\uparrow	H
Open or V_{EE}	\uparrow	L
X	Open or V_{EE}	No change

*Where logic states are differential, \uparrow is a low-to-high transition and X signifies a don't care state.
supply. With VCC connected to a positive supply and VEE connected to GND, the outputs are PECL. The outputs are ECL when $V_{C C}$ is connected to GND and $V_{E E}$ is connected to a negative supply.

Applications Information

T Flip-FIop

The MAX9381 can be configured as a T flip-flop by connecting Q to \bar{D} and \bar{Q} to D. This configuration provides an output at half the frequency of the clock. The maximum operating frequency is determined by the sum of the setup time, the propagation delay of the

Figure 1. Input and Output Voltage Definitions

Lowest Power 3.0GHz ECL/PECL Differential Data and Clock D Flip-Flop

Figure 2. CLK-to-Q Propagation Delay and Transition Timing Diagram
device and any added delay by circuit board traces The minimum supply voltage is 2.375 V and is determined by input and output voltage range.

Output Termination

Terminate the outputs through 50Ω to $\mathrm{VCC}-2 \mathrm{~V}$ or use equivalent Thevenin terminations. Terminate each Q and \bar{Q} outputs with identical termination on each for the lowest output distortion. When a single-ended signal is taken from the differential output, terminate both Q and \bar{Q}.
Ensure that output currents do not exceed the current limits as specified in the Absolute Maximum Ratings table. Under all operating conditions, the device's total thermal limits should be observed.

Power-Supply Bypassing

Bypass VCC to VEE with high-frequency surface-mount ceramic $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors. Place the capacitors as close to the device as possible with the $0.01 \mu \mathrm{~F}$ capacitor closest to the device pins.

Use multiple vias when connecting the bypass capacitors to ground. This reduces trace inductance, which lowers power-supply bounce when drawing high transient currents.

Circuit Board Traces
Circuit board trace layout is very important to maintain the signal integrity of high-speed differential signals. Maintaining integrity is accomplished in part by reducing signal reflections and skew, and increasing com-mon-mode noise immunity.
Signal reflections are caused by discontinuities in the 50Ω characteristic impedance of the traces. Avoid discontinuities by maintaining the distance between differential traces, not using sharp corners, or using vias. Maintaining distance between the traces also increases common-mode noise immunity. Reducing signal skew is accomplished by matching the electrical length of the differential traces.

Chip Information
TRANSISTOR COUNT: 375
PROCESS: Bipolar

Lowest Power 3.0GHz ECL/PECL Differential Data and Clock D Flip-Flop

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

